MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية المرحلة الثالثة

Module Information معلومات المادة الدر اسية					
Module Title	N	atural products النواتج الطبيعية		Module Delivery	
Module Type					
Module Code				⊠ Theory ⊠ Lecture	
Administering De	partment	Department of Chemistry	College	College of Sciences	
Module Leader	Name		e-mail	E-mail	
Module Leader's Acad. Title		Asst. Professor	Module Lea	Module Leader's Qualification Ph.D.	
Module Tutor	Name (if available)		e-mail	E-mail	
Peer Reviewer Name		Name	e-mail	E-mail	
Scientific Committee Approval Date		15/04/2024			

Module Aims, Learning Outcomes and Indicative Contents

	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية
	 To develop third-stage students' information on the subject of natural products and their medical and industrial important
Module Aims	To understand and know the classes of active chemical compounds that are produced by living organisms
أهداف المادة الدراسية	3. This course deals with the basic concepts of secondary metabolites and their classifications
	4. This course is important for teaching students the active chemical structures and their use as pharmaceuticals
	5. The course study the bio-synthesis of natural products pathways
	1. Identify the nature of secondary metabolites
	2. Identify the difference between primary and secondary metabolites
	 An important summary of how to identification chemical active compounds by different techniques
Module Learning Outcomes	4. Discuss the interaction and participation of natural active chemical compounds in pharmaceutical use.
	5. Description of terpenes, alkaloids, phenols, glycosides and antibiotics
مخرجات التعلم للمادة الدراسية	6. Determination of classes of active compounds of natural products
الدراسية	7. Study of biosynthesis and metabolic pathways
	8. Identifying the class and characteristics of each type of natural products
	9. Identify the chemical structures of all secondary metabolite compounds
	indicative content includes the following.
	Part A - Introducing Natural Products
Indicative Contents	metabolism, definitions of primary and secondary metabolism,
المحتويات الإرشادية	
	Why do we study natural products, classification of natural products compounds, ways to identify the structural composition of natural products. [15 hours]
	Part A Classes of Natural Products: 1- (Terpenoids) 2- D (Steroids)

3- (Alkaloids)
4- (Flavonoids and Anthocyanins)
5- Glycosides 6. (Coumarins)
7- (Phenanthernoids)
9- Vitamins 10- (Xanthones)
[15 hours]
Revision problem classes [6 hrs]
Part B - Study of antibiotics. [10 hours]

Learning and Teaching Strategies استراتيجيات التعلم والتعليم			
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.		

	Delivery Plan (Weekly Syllabus)			
	المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Introduction of Natural Product			
WEEK I	مدخل الى النواتج الطبيعية			
Week 2	Metabolism			
WCCKZ	التمثيل الغذائي			
Week 3	Classification of natural products			
week 3	تصنيف النواتج الطبيعية			
	Terpenoids + quiz			
Week 4	التربينات			
Week 5	Biosynthesis of terpenes			
week 5	التصنيع الحيوي للتربينات			
March C	Alkaloids			
Week 6	القلويدات			
	Classification of Alkaloids			
Week 7	تصنيف القلويدات			
	Phenols Compounds + midterm exam			
Week 8	مركبات الفينول			
	Biosynthesis of phenols			
Week 9	التصنيع الحيوي للفينول			
Week 10	Flavonoids+ quiz			

	الفلافونيدات
	Lignin and Biosynthesis of lignin
Week 11	
	اللجنين وتصنيع اللجنين
	Tannins and Glycosides
Week 12	
	التانيس والجليكوسيدات
	Essential Oils + quiz
Week 13	
	الزيوت الاساسية
	Antibiotics and Classification of antibiotic
Week 14	
	المضادات الحيوية وتصنيفها
	Pencillins
Week 15	
	البنسلينات
	Preparatory week before the final Exam
Week 16	
	اسبوع مراجعة قبل الامتحان

Learning and Teaching Resources مصادر التعلم والتدريس			
	Text	Available in the Library?	
Required Texts	Harborne, J.B. (1998). Phytochemical Methods; A guide to Modern Techniques of Plant Analysis, Chapman and Hall Ltd., London, Great Britain.	Yes	
Recommended Texts	Chemistry of Natural Products	Yes	
Websites	https://en.wikipedia.org/wiki/Natural_product		

Grading Scheme					
مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(50 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group (0 – 49)	F — Fail	راسب	(0-49)	Considerable amount of work required	

Module Information معلومات المادة الدر اسية					
Module Title	Physical Chemistry الكيمياء الفيزيائية/1 (المرحلة الثالثة)		Chemical Kinetics		
Module Type					
			— ⊠ Lab ⊠ Tutorial		
Module Level		1	Semester of	f Delivery	1
Administering Department Type Dept. Code		Type Dept. Code	College Type College Code		
Module Leader	Samah Hussein Kadhim سماح حسین کاظم		e-mail	samah.h_chem_chem(@sci utq.edu.iq

Module Leader's Acad. Title		Professor	Module Leader's Qualification		Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail	
Peer Reviewer Name		Name	e-mail	E-mail	
Scientific Committee Approval Date		15/04/2024			

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدرا <i>سي</i> ة	 1-To derive and use integrated rate expressions for first and second order reactions. 2- To understand how rates and reaction order can be determined from experimental data. 3- To describe the temperature dependence of rate in terms of the Arrhenius equation and simple collision theory (SCT) and activated complex theory (ACT). 4-To discuss elementary, complex non-chain and chain reactions. 5- To introduce the use of the steady state treatment in the disentangling of rate data. 6-To consider the kinetics of chain reactions, e.g. ozone depletion, radical polymerisation. 7- To consider the kinetics catalysis, using of enzyme-catalyzed reactions as an example. 				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Chemical Kinetics: rate equations and reaction rate constant; activation energy, its determination and interpretation. List the various terms associated with chemical kinetics. Summarize what is meant by a rate law, order and molecularity. Discuss the Arrhenius law; reaction kinetics of complex heterogeneous reactions; consecutive and competing reactions and rate determining steps; catalysis. Describe Polymerization kinetics- Enzymes- The Michaelis-Menten mechanism of enzyme catalysis Define the steady – state approximation. Apply mass and energy balances to chemical reactions. Use chemical thermodynamics to define problems. Acquire kinetic data from literature and 				

	laboratory. Interpret such data.
	8. Discuss the kinetic model of gases-the kinetic theory of gases viscosity
	9. Discuss the Maxwell-Boltzmann distribution of molecules.
	10. Discuss thermal conductivity.
	Indicative content includes the following.
	Part A – Chemical kinetics Introduction - Chemical kinetics- The rate of chemical reaction -factors influencing reaction rate- The rate law and rate constant- Order of reaction-Properties of reaction orders- Molecularity of a reaction-Derivation of differential and integral velocity equations-determination the reaction order- half-life time-first order reactions [hrs] Zero order reactions- Pseudo first order reactions- Determination of the reaction order-Temperature and Reaction Rate- Arrhenius equation-determination the activation energy- Collision theory. Transition state theory. [hrs]
Indicative Contents	Catalysts and Reaction Rates -Reaction mechanisms – the rate determination step and reaction mechanism- The steady – state approximation-Kinetics of complex reactions - Types of complex reactions - The parallel reactions- consecutive or sequential reactions. [hrs]
المحتويات الإرشادية	
	Reversible reactions- Chain reactions- explosions-Polymerization kinetics- Enzymes-
	The Michaelis-Menten mechanism of enzyme catalysis. [hrs]
	Revision problem classes [hrs]
	Part B - Molecular motion in gases
	Fundamentals
	Introduction – molecular motion in gases-the kinetic model of gases-the kinetic
	theory of gases viscosity. [hrs]
	The molecular velocity distribution of gases- The Maxwell-Boltzmann distribution of molecules-The mean free path, collision diameter-Thermal conductivity-Degrees of freedom of gaseous molecules. [hrs]
	The principle of equal power distribution- some numerical values of molecular kinetic

energy for ideal gases only. [hrs]

Learning and Teaching Strategies استراتيجيات التعلم والتعليم		
Strategies	The module is delivered through a series of lectures, supported by appropriate case study material as necessary. Lectures are supported with tutorial sessions, which promote teamwork, development of oral presentation and ICT skills, e-learning, peer feedback and self-learning. Learning outcomes are assessed by formal examination and coursework.	

Delivery Plan (Weekly Syllabus)		
	المنهاج الأسبوعي النظري	
	Material Covered	
Week 1	Introduction – Chemical kinetics- The rate of chemical reaction -factors influencing reaction rate	
Week 2	The rate law and rate constant- Order of reaction-Properties of reaction orders- Molecularity of a reaction	
Week 3	Derivation of differential and integral velocity equations-determination the reaction order- half-life time-first order reactions	
Week 4	Second order reactions- Third order reactions	
Week 5	Zero order reactions- Pseudo first order reactions- Determination of the reaction order	
Week 6	Temperature and Reaction Rate- Arrhenius equation-determination the activation energy-	
Week 7	Collision theory. Transition state theory	
Week 8	Catalysts and Reaction Rates -Reaction mechanisms – the rate determination step and reaction mechanism- The steady – state approximation	
Week 9	Kinetics of complex reactions - Types of complex reactions - The parallel reactions- consecutive or sequential reactions	

Week 10	Reversible reactions- Chain reactions- explosions
Week 11	Polymerization kinetics- Enzymes- The Michaelis-Menten mechanism of enzyme catalysis
Week 12	Introduction – molecular motion in gases-the kinetic model of gases-the kinetic theory of gases viscosity
Week 13	The molecular velocity distribution of gases- The Maxwell-Boltzmann distribution of molecules-The mean free path, collision diameter
Week 14	Thermal conductivity-Degrees of freedom of gaseous molecules
Week 15	The principle of equal power distribution- some numerical values of molecular kinetic energy for ideal gases only
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)
	المنهاج الأسبوعي للمختبر
	Material Covered
Week 1	Lab 1: Hydrolysis of an ester catalyzed by acid.
Week 2	Lab 2: Determination the rate constant of base catalyzed hydrolysis of an ester by titration.
Week 3	Lab 3: Determination the rate constant of base catalyzed hydrolysis of an ester by electrical conductivity measurements.
Week 4	Lab 4: Determination of rate constant of reaction between iodide and persulfate ions by titration.
Week 5	Lab 5: A Study of Reaction Kinetics the Iodination of Acetone.
Week 6	Lab 6: The mechanism study of hydrogen peroxide and hydrogen iodide.
Week 7	Lab 7: Hydrolysis of an Ester in the Presence of Base Using Different Concentration
Week 8	Lab 8: Determination the rate constant of a second order reaction using equal initial concentration
Week 9	Lab 9: The effect of change of temperature on the rate of reaction between H_2O_2 and HI.
Week 10	Lab 10: Study the effect of change of solvent on the reaction between iodide and persulfate ions.

Week 11	Lab 11: Study the effect of change of temperature on the reaction between iodide and persulfate ions.
Week 12	Lab 12: Determination of rate constant for the hydrolysis of benzilidine spectrophotometry.
Week 13	Lab 13: Study the autocatalytic reaction between potassium permanganate and oxalic acid.
Week 14	Lab 14: A kinetic study of potassium iodide with potassium persulfate using iodide clock reaction.
Week 15	Lab 15: The effect of concentration and temperature on the rate of reaction between sodium thiosulphate and hydrochloric acid.

Learning and Teaching Resources مصادر التعلم والتدريس		
	Text	Available in the Library?
Required Texts	Essentials of physical chemistry A Run Bahl B.S. Bahl G.D. Tull S. Chan company LTD. 2000	No
Recommended Texts	P.W. Atkins Physical chemistry 8th edition	No
Websites		

Grading Scheme					
	مخطط الدرجات				
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	F – Fail	راسب	(0-49)	Considerable amount of work required	
(0 – 49)					

Module Information معلومات المادة الدر اسية					
Module Title	Physical Chemistry/ كيمياء الفيزيائية /2 (المرحلة الثالثة)			Electrical and photocl	nemistry
				 ☐ Theory ☑ Lecture ☑ Lab ☑ Tutorial 	
Module Level		1	Semester o	f Delivery	1
Administering Dep	partment	Type Dept. Code	College	Type College Code	
Samah Hussei مین کاظم			e-mail	samah.h chem chem	@sci utq.edu.iq
Module Leader's Acad. Title		Professor	Module Lea	der's Qualification Ph.D.	
Module Tutor Name (if avail		able)	e-mail	E-mail	
Peer Reviewer Name		Name	e-mail	E-mail	
Scientific Committee Approval Date		15/04/2024			

Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية		
Module Aims 1. The aim of this module is to provide students with fundamental concepts of Electrical and photochemistry and their applications and importance in industry, energy and nature. 2-To understanding of Theories of electrolytic conductance 3-To understand voltage, current, Ohm's, and Faraday's laws of electrolysis.		

	A This source deals with the basic concert of electrochemical call
	4-This course deals with the basic concept of electrochemical cell.
	5-To understand the light inducedexcitation and photochemical reaction
	6-To understand Beer Lambert law and Einstein's law of photoequivalence.
	7-To understand molecular electronic structure and electronic spectrum.
	1. Recognize how electrolysis and electrochemical cells works
Module Learning	 List the various terms associated with Electrical and photochemistry. Summarize what is meant by a basic Galvanic Cells.
Outcomes	 Juminize what is meant by a basic Galvanic Cens. Discuss the Variation of conductance with concentration.
	5. Describe Types of electrodes.
The literation of the second	6. Define Ohm's law.
مخرجات التعلم للمادة الدراسية	 Identify the laws of photochemistry-Beer Lambert law
الدراسية	8. Discuss the electronic spectrum-photosensitization
	9. Discuss the photochemical processes and quantum yield
	Indicative content includes the following.
	Part A - Electrical
	Introduction-Electrochemistry-Important laws and units-Electrolysis and Faraday's
	laws of electrolysis- Electrolytic conductivity- equivalent conductance-molar conductance- Variation of conductance with concentration. [hrs]
	conductance- variation of conductance with concentration. [his]
	Determination of Λ° - Conductance Measurements Applications-Theory of electrolytic
Indicative Contents	conductance -Electrical migration and transport numbers-Conductometric titrations-
•• · · · · · · · · · ·	Mobilities of hydrogen and hydroxyl ions. [hrs]
المحتويات الإرشادية	
	Electrochemical Cell- Galvanic Cells, Daniel cell- Electromotive force- galvanic series
	Types of electrodes. [hrs]
	Reversible Galvanic Cell Operation- Changes in Free Energy for Cell Reaction- Nernst
	Equation -Concentration cells- Types of concentration cells- Potentiometric titrations
	Batteries- types of batteries. [hrs]

Revision problem classes [hrs]
<u>Part B - Photochemistry</u>
Fundamentals
Photochemistry- regions of the electromagnetic spectrum-the laws of photochemistry-Beer Lambert law-Einstein's law of photoequivalence-quantum yield-photochemical processes. [hrs]
Selective chemical reactions-molecular orbitals and types of electronic transfers- Molecular electronic structure-multiplicity, singlet and triplet states-selection rules- Types of transfers forbidden and allowed- potential energy curves for diatomic molecules. [hrs]
electronic spectrum-photosensitization-half-life of excited state –quantum yield for fluorescence and phosphorescence. [hrs]

Learning and Teaching Strategies استراتيجيات التعلم والتعليم		
Strategies	The module is delivered through a series of lectures, supported by appropriate case study material as necessary. Lectures are supported with tutorial sessions, which promote teamwork, development of oral presentation and ICT skills, e-learning, peer feedback and self-learning. Learning outcomes are assessed by formal examination and coursework.	

Delivery Plan (Weekly Syllabus)

	المنهاج الاسبوعي النظري
	Material Covered
	Introduction-Electrochemistry-Important laws and units-Electrolysis and Faraday's laws of
Week 1	electrolysis
Week 2	Electrolytic conductivity- equivalent conductance-molar conductance- Variation of conductance with concentration
Week 3	Determination of Λ° - Conductance Measurements Applications
Week 4	Theory of electrolytic conductance -Electrical migration and transport numbers
Week 5	Conductometric titrations- Mobilities of hydrogen and hydroxyl ions
Week 6	Electrochemical Cell- Galvanic Cells, Daniel cell- Electromotive force- galvanic series
Week 7	Types of electrodes
Week 8	Reversible Galvanic Cell Operation- Changes in Free Energy for Cell Reaction- Nernst Equation
Week 9	Concentration cells- Types of concentration cells- Potentiometric titrations
Week 10	Batteries- types of batteries
Week 11	Photochemistry- regions of the electromagnetic spectrum-the laws of photochemistry-Beer Lambert law
Week 12	Einstein's law of photoequivalence-quantum yield- photochemical processes
Week 13	Selective chemical reactions-molecular orbitals and types of electronic transfers- Molecular electronic structure
Week 14	multiplicity, singlet and triplet states-selection rules- Types of transfers forbidden and allowed- potential energy curves for diatomic molecules
Week 15	electronic spectrum-photosensitization-half-life of excited state –quantum yield for fluorescence and phosphorescence
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

	المنهاج الأسبوعي للمختبر
	Material Covered
Week 1	Lab 1: Introduction - Determination of cell constant.
Week 2	Lab 2: Conductomtric titration of strong acid with strong base.
Week 3	Lab 3: Conductomtric titration of an acid mixture (HCl+HAC) with strong base.
Week 4	Lab 4: Variation of conductance with concentration strong and weak electrolytes.
Week 5	Lab 5: Determination of equivalent conductance at infinite dilution (Λ^{2}) and dissociation constant of weak acid (acetic and benozoic acid).
Week 6	Lab 6: Quantitratin analysis of aspirin bills by electrical conductivity measurements.
Week 7	Lab 7: Determination of solubility of sparingly soluble salts from conductivity measurements.
Week 8	Lab 8: Determination of hydrolysis constant of anline hydrochloride by conductivity.
Week 9	Lab 9: Titration of KCl vs AgNO ₃ (Precipitation Titration)
Week 10	Lab 10: Determination the hydrolysis constant by conductimetric measurements.
Week 11	Lab 11: Determination the dissociation constant of a weak acid (approximate E.M.F.) PH method.
Week 12	Lab 12: The standard electrode potentials zinc and copper.

Learning and Teaching Resources				
	مصادر التعلم والتدريس			
	Text	Available in the Library?		
Required Texts	Physical chemistry Gordon . m. barrow	NO		
Recommended Texts	P.W. Atkins Physical chemistry 8th edition	No		
Websites				

Grading Scheme				
مخطط الدرجات				
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group (0 – 49)	F — Fail	راسب	(0-49)	Considerable amount of work required

Module Information معلومات المادة الدر اسية						
Module Title	Inc	organic chemistr	y	Modu	le Delivery	
Module Type					🖾 Theory	
Module Code						
ECTS Credits						
SWL (hr/sem)					□ Seminar	
Module Level		1	Semester of Delivery		1	
Administering Dep	partment	Type Dept. Code	College	Type College Code		
Module Leader	Leader المعنية Nuha Hussain Mzher & Haider Abbas Mahdi نهى حسين مزهر حيدر عباس مهدي		e-mail	Nuh.hu	ssain@sci.utq.ed	lu.iq
Module Leader's Acad. Title		Professor	Module Lea	der's Qualification Ph.D.		Ph.D.
Module Tutor Name (if availa		able)	e-mail E-mail			
Peer Reviewer Name		Name	e-mail	E-mail	E-mail	
Scientific Committee Approval Date		01/06/2023	Version Nu	ersion Number 1.0		

Module Aims, Learning Outcomes and Indicative Contents				
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims				
أهداف المادة الدراسية	 To develop the ability to correlate the chemical and physical properties of elements and their compounds with their positions in the periodic table. 			
	 To establish the link between theory and laboratory practice by conducting laboratory experiments 			

	 A major application of coordination compounds is their use as catalysts, which serve to alter the rate of chemical reactions. Certain complex metal catalysts, for example, play a key role in the production of polyethylene and polypropylene
Module Learning	
Outcomes	1. discuss the properties of coordination compounds
	2. Categorize Coordination Compounds
	3. Relate Valence Bond Theory and Hybridization
مخرجات التعلم للمادة	4. Discuss Valence Bond Theory
مخرجات التعلم للمادة الدراسية	5. consider Effective Atomic Number Theory and Werner Complexes
	6. Correlate Electroneutral Principle and Connecting Back
Indicative Contents	
المحتويات الإرشادية	

Learning and Teaching Strategies		
	استراتيجيات التعلم والتعليم	
Strategies		

Delivery Plan (Weekly Syllabus)		
المنهاج الأسبوعي النظري		
Material Covered		
Coordination Compounds: Nomenclature of Coordination Compounds,, Transition Metals,		

Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Week 10
Week 11
Week 12
Week 13
Week 14
Week 15
Week 16
Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1	Lab 1: Chemistry of iron Detection of iron ions		
Week 2	Week 2 Lab 2: Preparation of the complex tri-oxalato ferrate (III) potassium trihydrate		
Week 3	Lab 3: Isomers: Geometrical isomers		

Week 4	Lab 4: Preparation of the complex trans chloride bis (ethylene diamine) dichlorocobalt (III)
Week 5	Lab 5: Preparation of the complex cis chloride bis (ethylene diamine) dichlorocobalt (III)
Week 6	Lab 6: Preparation of the complex cis di-aqua-di-oxalato-chromate (III) potassium trihydrate
Week 7	Lab 7: Preparation of the complex trans di-aqua-di-oxalato-chromate (III) potassium trihydrate
Week 8	Lab 8: A study of the rate of isomerization rate of the trans complex to the cis complex
Week 9	Lab 9: Isomers: Linkage isomers
Week 10	Lab 10: Preparation of the complex Pentachloroamine tri-cobalt chloride
Week 11	Lab 11: Complex preparation of pentaamine nitro cobalt(III) chloride
Week 12	Lab 12: Complex preparation of pentaamine nitrito cobalt(III) chloride
Week 13	Lab 13: Perform spectroscopic measurements of the linkage isomer complexes
Week 14	Lab 14: Preparation of the complex hexaisothiocyanate potassium chromate (III) hexahydrate
Week 15	Lab 15: Examination
Week 16	Preparatory week before the final Exam

	Learning and Teaching Resources	
	مصادر التعلم والتدريس	
	Text	Available in the Library?
Required Texts	Text Book of Coordination Chemistry, R. K. Sharma, Discovery Publishing House, 2007	No Online only
Recommended Texts	Coordination Chemistry, George B. Kauffman, 1994	No Online only
Websites		

	Grading Scheme						
مخطط الدرجات							
Group	Grade	التقدير	Marks (%)	Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors			
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group							
(0 – 49)	F – Fail	راسب	(0-49)	Considerable amount of work required			
				1			

Module Information معلومات المادة الدر اسية						
Module Title	Inorganic chemistry		' y	Module Delivery		
Module Type				⊠ Theory		
Module Code				⊠ Lecture ⊠ Lab		
ECTS Credits	ECTS Credits			☐ Tutorial □ Practical		
SWL (hr/sem)				🗆 Seminar		
Module Level		1	Semester of Delivery 1		1	
Administering Department		Type Dept. Code	College Type College Code			
Module Leader	Nuha Hussain & Haider Abba نھی حسین مزھر		e-mail	Nuh.hussain@sci.utq.edu.iq		

	حيدر عباس مهدي	-				
Module Leader's Acad. Title		Professor	Module Leader's Qualification Ph.D.			Ph.D.
Module Tutor Name (if available)		e-mail	E-mail			
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0	

Modu	le Aims, Learning Outcomes and Indicative Contents
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية
Module Aims أهداف المادة الدراسية	 Coordination compounds are a major feature of the chemistry of over half the elements. Coordination compounds have important roles as industrial catalysts in controlling reactivity, and they are essential in biochemical processes Coordination Compounds Are Involved in the Treatment of Patients Poisoned with Heavy Metal Ions Coordination Complexes Are Used in X-Ray Crystallography and Nuclear Magnetic Resonance
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Determine Molecule Structure Correlate Lewis Structure, Octet Rules, VSEPR Rules recognize Molecular Orbital Theory and The Combination Of Atomic Orbitals Explain to bonding in complexes using Molecular Orbital Theory and The Combination Of Atomic Orbitals Explain the spectroscopic properties of coordination compounds. Refer to the reaction mechanisms of coordination compounds.
Indicative Contents المحتويات الإرشادية	

	Learning and Teaching Strategies				
	استراتيجيات التعلم والتعليم				
Strategies					

	Delivery Plan (Weekly Syllabus)
	المنهاج الأسبوعي النظري
	Material Covered
Week 1	The introduction of bonding theory: Ionic and Covalent Bonding
Week 2	Electrostatic and Crystal Field Theory
Week 3	Crystal Field Theory to octahedral system
Week 4	Crystal Field Theory to tetrahedral system
Week 5	John Teller Event
Week 6	Ionic Bond and Metallic Bond; Crystal Structure, Lattice Energy
Week 7	Molecular Orbital Theory and The Combination Of Atomic Orbitals, Heteronuclear polyatomic molecules
Week 8	Molecular Orbital Theory and The Combination Of Atomic Orbitals, Homonuclear diatomic molecules
Week 9	Molecular Orbital Theory to complexes
Week 10	Magnetic Properties of Coordination Compounds
Week 11	Color in Coordination Compounds
Week 12	Thermodynamics and Kinetics of Complex Formation
Week 13	Reactions in Octahedral Complexes
Week 14	Reactions in Square Planar Complexes
Week 15	electronic transition

Week 16	Preparatory week before the final Exam
---------	--

	Delivery Plan (Weekly Lab. Syllabus)
	المنهاج الاسبوعي للمختبر
	Material Covered
Week 1	Lab 1: cobalt ion reactions
Week 2	Lab 2: Preparation of the complex ethylenediaminetetrachloride barium cobaltate (III) tetrahydrate
Week 3	Lab 3: Preparation of the complex tricarbonate sodium cobaltate (III) trihydrate
Week 4	Lab 4: Preparation of the complex hexaamine cobalt (III)
Week 5	Lab 5: Preparation of the complex triamine trinitro cobalt (III)
Week 6	Lab 6: Preparation of the complex potassium cobalt(III) tri-oxalate
Week 7	Lab 7: Preparation and spectroscopic study of some complexes of copper(II).
Week 8	Lab 8: Preparation of the complex bis-clasinito copper(II) dihydrate
Week 9	Lab 9: Preparation of the complex bis sulfate (ethylene diamine) copper(II) dihydrate
Week 10	Lab 10: Preparation of the complex dioxalato-copper (II) potassium dihydrate
Week 11	Lab 11: Spectroscopic study of the prepared copper complexes
Week 12	Lab 12: Nickel ion interactions
Week 13	Lab 13: Preparation of the complex hexaamine nickel(II) chloride
Week 14	Lab 14: Preparation of complex bis (dimethylglyoxime) nickel (II)
Week 15	Lab 15: Examination
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources

	مصادر التعلم والتدريس	
	Text	Available in the Library?
Required Texts	Text Book of Coordination Chemistry, R. K. Sharma, Discovery Publishing House, 2007	No Online only
Recommended Texts	Coordination Chemistry, George B. Kauffman, 1994	No Online only
Websites		

Grading Scheme مخطط الدرجات							
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors			
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required			

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

	Indicative content includes the following.
Indicative Contents المحتويات الإرشادية	1-Use of known learning methods through the explanation of the theoretical material -2 Use the blackboard and electronic screen as a means of showing important information during the explanation -3 Adoption of the basic book in giving the student the scientific foundations -4 Stirring a group of Thinking questions during lectures, which increases and motivates students to analyze and conclude

Learning and Teaching Strategies استراتيجيات التعلم والتعليم		
Strategies	 1-Stirring a group of Thinking questions during lectures, which increases and motivates students to analyze and conclude 2- Giving students homework that requires self-explanation Assessment methods 3-Monthlywrittentests -4 Asking deductive questions during the lecture and preparing homework 5- Conducting a quick daily exam during the lecture time 	

	Delivery Plan (Weekly Syllabus)		
	المنهاج الأسبوعي النظري		
	Material Covered		
Week 1	1 Aldehydes and Ketones		
Week 2	Week 2 Introduction of ald. and ket.		
Week 3	eek 3 Naming of aldehydes and ketones		

Week 4	Structure and physical properties of ald. and ket.
Week 5	Synthesis of aldehydes and ketones
Week 6	Reaction of aldehydes and ketones
Week 7	Stereochemistry
Week 8	Types of stereoisomers
Week 9	Chirality. Enantiomers and Diesteromeres
Week 10	R&S Configuration
Week 11	E& Z Isomers
Week 12	Optically Active
Week 13	
Week 14	
Week 15	
Week 16	

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الأسبوعي للمختبر		
	Material Covered		
Week 1	Preparation of aspirin		
Week 2	Sulphonation of aromatic hydrocarbons		
Week 3	Preparation of p-toluenesulphonic acid		
Week 4	Preparation of esters		
Week 5	Preparation of ethyl benzoate		

Week 6	Nitration of aromatic hydrocarbons	
Week 7	k 7 Preparation of benzoic acid from toluene	

Learning and Teaching Resources مصادر التعلم والتدريس			
	Text	Available in the Library?	
Required Texts	Boyd and Morrison in Organic Chemistry 2020 دراسه مقصله وامثله محلوله في الكيمياء العضويه المؤلف الدكتور محمود شاكر مكطوف جامعه ذي قار كليه العلوم قسم الكيمياء	Yes	
Recommended Texts	Practical organic chemistry by vogal 2020	yes	
Websites			

Module Information معلومات المادة الدر اسية					
Module Title	Biochemistry الكيمياء الحياتية/1 (المرحلة 3)		Module Delivery		
Module Type					
			⊠ Theory ⊠ Lecture		
				🖾 Lab	
		-	-		
Module Level		1	Semester of	f Delivery	1
Administering Department		Type Dept. Code	College	Type College Code	
Module Leader	Dr. Raid M. H. Al-Salih		e-mail	raidstry@gmail.com	

	رائد معلك حنون				
Module Leader's Acad. Title		Professor	Module Leader's Qualification Ph.D.		Ph.D.
Module Tutor Name (if availa		able)	e-mail	E-mail	
Peer Reviewer Name		Name	e-mail	E-mail	
Scientific Committee Approval Date		01/04/2024			

Module Aims, Learning Outcomes and Indicative Contents				
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدراسية	 9. To learn about the precursors of biological macromolecules. 10. To know the functions of carbohydrates, lipids, and Proteins. 11. To realize the importance of macromolecules. 12. To learn the chemical structures of these macromolecules. 13. To know the reactions of mentioned macromolecules in the organisms. 14. To be able to recognize among these compounds. 15. To know the organization of protein structure. 			
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Have the ability to describe the origin of macromolecules. Have the ability to describe the functions of macromolecules. Have the ability to draw the chemical structures of common carbohydrates. Have the ability to classify the carbohydrates. Have the knowledge about the products of carbohydrates reactions. Have the Knowledge about the products of lipid reactions. Have the ability to write the chemical structures of fatty acids and amino acids. Have the ability to describe the chemical structures of proteins. Have the ability to describe the chemical structures of proteins. Have the ability to write the alpha helix protein structure. Have the knowledge about the classification of lipids. 			
Indicative Contents	Indicative content includes the following.			

المحتويات الإرشادية	
المحتويات الإرسادية	 Origin of life and the pecursors of macromolecules [2 hrs] Carbohydrates definition, functions, classifications, and reactions [10 hrs] Problems about carbohydrates [2 hrs] Lipids definition, functions, classifications, and reactions. [8 hrs] Problems about lipids. [2 hrs] Proteins definition, functions, classifications, and reactions [10 hrs] Problems about proteins [2 hrs]

Learning and Teaching Strategies				
	استر اتيجيات التعلم والتعليم			
Strategies	Foundational concepts are underlying concepts that students are expected to know prior to entering biochemistry and are essential for understanding big ideas in the discipline. These strategies include bond energy, free energy, pH/pKa, hydrogen bonding, alpha helix, and protein function with subsequent development of a diagnostic instrument to assess student understanding of these concepts at the onset and close of a biochemistry course. Foundational concepts are integral to student success in biochemistry as they provide a scaffold onto which students build threshold concepts, a transformed way of understanding the discipline without which the learner cannot progress. A number of threshold concepts in biochemistry can be added including the physical basis of interactions, macromolecular structure and function, and steady state. Utilization of pre-existing mental structures to build new knowledge is the basis for the constructivist model of learning. Learners create new meaning using what they already know thus information retrieval is integral to making these connections.			

Delivery Plan (Weekly Syllabus)						
	المنهاج الأسبوعي النظري					
	Material Covered					
Week 1	Introduction – Origin of life/ precursors of macromolecules					
Week 2	Carbohydrates- Definition, functions and classification.					
Week 3	Structures of carbohydrates					
Week 4	Isomerism of carbohydrates					
Week 5	Isomerism of carbohydrates / reactions of carbohydrates					
Week 6	Description of some important carbohydrates and there derivatives.					
Week 7	Problems about carbohydrates					
Week 8	Lipids - Definition, functions and classification.					
Week 9	Fatty acids- classification, structures, and reactions					
Week 10	Simple lipids reactions					
Week 11	Phospholipids- types, functions and reactions.					
Week 12	Problems about lipids.					
Week 13	Amino acids- definition, classifications, and structures					
Week 14	Reactions of amino acids					
Week 15	Peptides and proteins – structures					
Week 16	Preparatory week before the final Exam					

Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الأسبوعي للمختبر	
	Material Covered	

Week 1	Lab 1: Introduction to carbohydrates			
Week 2	Lab 2: Molish test (general test of carbohydrates)			
Week 3	Lab 3:Seliwanoff's test (distinguish an aldohexoses from a ketoses)			
Week 4	Lab 4: Bial's test (determination of pentose sugars)			
Week 5	Lab 5: Quiz + Fehlling's test			
Week 6	Lab 6: : Benedict's test (reduction under alkaline condition)			
Week 7	Lab 7: Barfoed's test (reduction under acidic condition)			
Week 8	Lab 8 Quiz + Osazone's test (confirm the identity of reducing sugar)			
Week 9	Lab 9: lodine test (distinguish between polysaccharides from other carbohydrates and starch from other polysaccharides)			
Week 10	Lab 10: Exam			
Week 11	Lab 11:			
Week 12	Lab 12:			
Week 13	Lab 13:			
Week 14	Lab 14:			
Week 15	Lab 15:			

Learning and Teaching Resources مصادر التعلم والتدريس			
	Text	Available in the Library?	
Required Texts	PRINCIPLES OF BIOCHEMISTRY by David L. Nelson and Michael M. Cox	Yes	
Recommended Texts	Biochemistry by Reginald H. Garrett Charles M. Grisham University of Virginia	No	
Websites	https://www.googleadservices.com/pagead/aclk?sa=L&ai=DC M7_AhVCh2gJHcDjCDEYABAAGgJ3Zg&ohost=www.google.cor		

_4iWOcYb_8JOfJvpL-F7YIgrdGl13zh4J9I8WsI1mutdns9hYUdktXadbisFS2R3at1g-
0OMoqOqNkt2fuhLTPPHJEwudZdpGuDCGXV47aX34hnx-
IpxbIAKCbQ87jsOlUrBr7Jnu1&sig=AOD64_1stsmSDejwtPdTpVJQyfdJPH_8-
g&q&adurl&ved=2ahUKEwjg-Yaj-M7_AhVrZ_EDHbrMDHUQ0Qx6BAgIEAE

Grading Scheme					
مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
(50 - 100)	C – Good	جيد	70 - 79	Sound work with notable errors	
(50 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group					
(0 – 49)	F – Fail	راسب	(0-49)	Considerable amount of work required	

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information

معلومات المادة الدر اسية

Module Title	رحلة 3)		Modu	Ile Delivery		
Module Type						
Module Code				⊠ Theory ⊠ Lecture		
ECTS Credits		⊠ Lab				
SWL (hr/sem)						
Administering Department		Type Dept. Code	College	Type College Code		
Module Leader	Dr. Raid M. H. علك حنون		e-mail E-mail			
Module Leader's Acad. Title		Professor	Module Lea	Nodule Leader's Qualification		Ph.D.
Module Tutor	Name (if availa	able)	e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	E-mail	E-mail	
Scientific Committee Approval Date		15/04/2024	Version Number 1.0			

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Aims أهداف المادة الدراسية	 16. To learn about the nucleic acids and protein synthesis. 17. To know the functions of nucleotides. 18. To realize the importance of nitrogen bases and their structures. 19. To learn the chemical structures of the nucleic acids. 20. To know the chemical structures of vitamins . 21. To be able to recognize between water soluble vitamins and fat soluble vit. 22. To know the functions of vitamins and their effects on health. 23. To know the chemical composition of enzymes. 24. To know the functions of enzymes. 25. To learn the factors affecting on the enzymatic reaction rate. 			

	26. To know the types of enzyme inhibitors.
	27. To know the concept of denaturation of enzymes.
	28. To be able to describe the classification of hormones.
	29. To know the mechanism of hormone secretion.
	30. To know the concept of negative feed back in regulation of hormone work.
	31. To be able to describe the bioenergetics.
	23. Have the ability to describe the chemical contents of nucleic acids.
	24. Have the ability to describe the functions of nucleotides
Madula Learning	25. Have the ability to draw the chemical structures of the codon.
Module Learning	26. Have the ability to classify the vitamins.
Outcomes	27. Have the knowledge about the functions of both classes of vitamins.
	28. Have the Knowledge about the health disorders of the deficiency of vitamins.
	29. Have the ability to write the chemical structures vitamins.
مخرجات التعلم للمادة الدراسية	30. Have the ability to describe the chemical composition of enzymes.
الدراسية	31. Have the ability to describe the types of enzyme inhibitors.
	32. Have the knowledge about the classification of hormones.
	33. Have the ability to describe the mechanism of hormone secretion.
	34. Have the knowledge about bioenergetics.
	Indicative content includes the following.
	- Nucleic acids/ definition/ types/ Functions. [2 hrs]
Indicative Contents	- Nucleotides and nucleosides / functions and structures [4 hrs]
المحتويات الإرشادية	- DNA structures/ types of RNA / protein synthesis. [2 hrs]
2007 - 290 - 200	- Vitamins definition, functions, classifications, and deficiency . [6 hrs]
	- Enzymes definition, functions, classifications, and composition. [10 hrs]
	- Hormones definition, functions, classifications, and disorders . [6 hrs]
	- Bioenergetics.

Learning and Teaching Strategies				
	استراتيجيات التعلم والتعليم			
Strategies	Foundational concepts are underlying concepts that students are expected to know prior to entering biochemistry and are essential for understanding big ideas in the discipline. These strategies include bond energy, free energy, pH/pKa, hydrogen bonding, alpha helix, and protein function with subsequent development of a			

	diagnostic instrument to assess student understanding of these concepts at the onset
	and close of a biochemistry course. Foundational concepts are integral to student
	success in biochemistry as they provide a scaffold onto which students build
	threshold concepts, a transformed way of understanding the discipline without which
	the learner cannot progress. A number of threshold concepts in biochemistry can be
	added including the physical basis of interactions, macromolecular structure and
	function, and steady state. Utilization of pre-existing mental structures to build new
	knowledge is the basis for the constructivist model of learning. Learners create new
	meaning using what they already know thus information retrieval is integral to
	making these connections.

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Nucleic acids/ definition/ types/ general chemical composition.				
Week 2	Nitrogen bases/ types and structures/ Nucleosides and nucleotide.				
Week 3	DNA structures/ types of RNA/ Protein synthesis				
Week 4	Vitamins/ classification/ general review.				
Week 5	Water soluble vitamins. / structures/ RDA/ deficiency.				
Week 6	Fat soluble vitamins. / structures/ RDA/ deficiency.				
Week 7	Enzymes/ definition/ chemical composition/ the mechanism of enzyme activity.				
Week 8	Classes of enzymes/ examples/ factors affecting on enzyme activity.				

Г

Week 9	Michaelis Menten and lineweaver burk equations.
Week 10	Inhibitors / types / examples / denaturation of enzymes.
Week 11	Problems
Week 12	Hormones/ definition/ chemical structures/ the mechanism of hormones secretions.
Week 13	Classification of hormones.
Week 14	Disorders related to hormones deficiency.
Week 15	Bioenergetics
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus) المنهاج الأسبوعي للمختبر				
	Material Covered				
Week 1	Lab 1: Introduction to Lipids and fatty acids				
Week 2	Lab 2: Separate the main types of fat				
Week 3	Lab 3: Acrolein test (distinguish of glycerol)				
Week 4	Lab 4: copper acetate test differentiate between TG, saturated and unsaturated fatty acids				
Week 5	Lab 5: Iodine test (distinguish unsaturated fatty acids)				
Week 6	Lab 6: Quiz + preparation of soap test				
Week 7	Lab 7: reaction of soap (a) preparation of fatty acids from soap by using HCl				
Week 8	Lab 8: reaction of soap (b) Salting out				
Week 9	Lab 9: reaction of soap (c) Insoluble soap				
Week 10	Lab 10: Quiz + Color test of proteins and amino acids (1) Ninhydrin test				
Week 11	Lab 11: (2) Xanthoproteic test				

Week 12	Lab 12: (3) Biuret test (general test for compounds having a peptide bond)
Week 13	Lab 13: Exam
Week 14	Lab 14:
Week 15	Lab 15:

Learning and Teaching Resources					
مصادر التعلم والتدريس					
	Text	Available in the Library?			
Required Texts	PRINCIPLES OF BIOCHEMISTRY by David L. Nelson and Michael M. Cox	Yes			
Recommended Texts	Biochemistry by Reginald H. Garrett Charles M. Grisham University of Virginia	No			
Websites	https://www.googleadservices.com/pagead/aclk?sa=L&ai=DChcSEwiLw42j- M7_AhVCh2gJHcDjCDEYABAAGgJ3Zg&ohost=www.google.com&cid=CAESa-D2D- 4iWOcYb_8JOfJvpL-F7YIgrdGl13zh4J9l8WsI1mutdns9hYUdktXadbisFS2R3at1g- 0OMoqOqNkt2fuhLTPPHJEwudZdpGuDCGXV47aX34hnx- IpxblAKCbQ87jsOlUrBr7Jnu1&sig=AOD64_1stsmSDejwtPdTpVJQyfdJPH_8- g&q&adurl&ved=2ahUKEwjg-Yaj-M7_AhVrZ_EDHbrMDHUQ0Qx6BAgIEAE				

Grading Scheme						
	مخطط الدرجات					
Group	Group Grade التقدير Marks (%) Definition					
Success Group	A - Excellent	امتياز	90 - 100	Outstanding Performance		
(50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
	C - Good	جيد	70 - 79	Sound work with notable errors		

	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group				
(0 – 49)	F – Fail	راسب	(0-49)	Considerable amount of work required

Module Information معلومات المادة الدر اسية					
Module Title	ule Title Inorganic chemistry الكيمياء الاعضوية/2 (المرحلة 3)		Module Delivery		
Module Type	Core		⊠ Theory		
Module Code	CHE 24120			⊠ Lecture ⊠ Lab	
ECTS Credits	6		☐ Tutorial □ Practical		
SWL (hr/sem) 150					
Administering Department Type Dept. Code		College	Type College Code		
Module Leader	Nuha Hussain Mzher & Haider Abbas Mahdi نھی حسین مزھر حیدر عباس مھدي		e-mail	Nuh.hussain@sci.utq.edu.iq	

Module Leader's Acad. Title		Professor	Module Leader's Qualification		Ph.D.
Module Tutor	Name (if availa	able)	e-mail	E-mail	
Peer Reviewer Name		Name	e-mail	E-mail	
Scientific Committee Approval Date		15/04/2024			

Modu	Module Aims, Learning Outcomes and Indicative Contents						
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية						
Module Aims أهداف المادة الدراسية	 Coordination compounds are a major feature of the chemistry of over half the elements. Coordination compounds have important roles as industrial catalysts in controlling reactivity, and they are essential in biochemical processes Coordination Compounds Are Involved in the Treatment of Patients Poisoned with Heavy Metal lons Coordination Complexes Are Used in X-Ray Crystallography and Nuclear Magnetic Resonance 						
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Determine Molecule Structure Correlate Lewis Structure, Octet Rules, VSEPR Rules recognize Molecular Orbital Theory and The Combination Of Atomic Orbitals Explain to bonding in complexes using Molecular Orbital Theory and The Combination Of Atomic Orbitals Explain the spectroscopic properties of coordination compounds. Refer to the reaction mechanisms of coordination compounds. 						
Indicative Contents المحتويات الإرشادية							

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم		
Strategies		

	Delivery Plan (Weekly Syllabus)
	المنهاج الاسبوعي النظري
	Material Covered
Week 1	The introduction of bonding theory: Ionic and Covalent Bonding
Week 2	Electrostatic and Crystal Field Theory
Week 3	Crystal Field Theory to octahedral system
Week 4	Crystal Field Theory to tetrahedral system
Week 5	John Teller Event
Week 6	Ionic Bond and Metallic Bond; Crystal Structure, Lattice Energy
Week 7	Molecular Orbital Theory and The Combination Of Atomic Orbitals, Heteronuclear polyatomic molecules
Week 8	Molecular Orbital Theory and The Combination Of Atomic Orbitals, Homonuclear diatomic molecules
Week 9	Molecular Orbital Theory to complexes
Week 10	Magnetic Properties of Coordination Compounds
Week 11	Color in Coordination Compounds
Week 12	Thermodynamics and Kinetics of Complex Formation
Week 13	Reactions in Octahedral Complexes
Week 14	Reactions in Square Planar Complexes
Week 15	electronic transition

	Delivery Plan (Weekly Lab. Syllabus)
	المنهاج الأسبوعي للمختبر
	Material Covered
Week 1	Lab 1: cobalt ion reactions
Week 2	Lab 2: Preparation of the complex ethylenediaminetetrachloride barium cobaltate (III) tetrahydrate
Week 3	Lab 3: Preparation of the complex tricarbonate sodium cobaltate (III) trihydrate
Week 4	Lab 4: Preparation of the complex hexaamine cobalt (III)
Week 5	Lab 5: Preparation of the complex triamine trinitro cobalt (III)
Week 6	Lab 6: Preparation of the complex potassium cobalt(III) tri-oxalate
Week 7	Lab 7: Preparation and spectroscopic study of some complexes of copper(II).
Week 8	Lab 8: Preparation of the complex bis-clasinito copper(II) dihydrate
Week 9	Lab 9: Preparation of the complex bis sulfate (ethylene diamine) copper(II) dihydrate
Week 10	Lab 10: Preparation of the complex dioxalato-copper (II) potassium dihydrate
Week 11	Lab 11: Spectroscopic study of the prepared copper complexes
Week 12	Lab 12: Nickel ion interactions
Week 13	Lab 13: Preparation of the complex hexaamine nickel(II) chloride
Week 14	Lab 14: Preparation of complex bis (dimethylglyoxime) nickel (II)
Week 15	Lab 15: Examination
Week 16	Final Exam

Learning and Teaching Resources

	مصادر التعلم والتدريس	
	Text	Available in the Library?
Required Texts	Text Book of Coordination Chemistry, R. K. Sharma, Discovery Publishing House, 2007	No Online only
Recommended Texts	Coordination Chemistry, George B. Kauffman, 1994	No Online only
Websites		

	Grading Scheme						
مخطط الدرجات							
Group	Grade	التقدير	Marks (%)	Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors			
(00 -00)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group							
(0 – 49)	F – Fail	راسب	(0-49)	Considerable amount of work required			

Module Information معلومات المادة الدراسية						
Module Title	Biochemistry			Module Delivery		
Module Type	Core 🛛 Theory					
Module Code	CHE 36135		☐ Lecture _ ⊠Lab ⊠Tutorial □ Practical			
ECTS Credits	6					
SWL (hr/sem)	150			□ Seminar		
Module Level		3	Semester of Delivery		6	
Administering Department		Chemistry	College College of Science			
Module Leader	Dr. Raid M. H. Al-Salih		e-mail	E-mail		

Module Leader's Acad. Title		Professor	Module Leader's Qu		alification	Ph.D.
Module Tutor			e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0	

	Relation with other Modules				
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	CHE 35028	Semester	5		
Co-requisites module	None	Semester			

Modu	Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims أهداف المادة الدراسية	 To learn about the nucleic acids and protein synthesis. To know the functions of nucleotides. To realize the importance of nitrogen bases and their structures. To learn the chemical structures of the nucleic acids. To know the chemical structures of vitamins. To be able to recognize between water soluble vitamins and fat soluble vit. To know the functions of vitamins and their effects on health. To know the chemical composition of enzymes. To know the functions of enzymes. To learn the factors affecting on the enzymatic reaction rate. To know the types of enzyme inhibitors. To know the concept of denaturation of hormones. To know the concept of hormone secretion. To know the concept of negative feedback in regulation of hormone work. 					

	47. To be able to describe the bioenergetics.
	35. Have the ability to describe the chemical contents of nucleic acids.
	36. Have the ability to describe the functions of nucleotides
Module Learning	37. Have the ability to draw the chemical structures of the codon.
•	38. Have the ability to classify the vitamins.
Outcomes	39. Have the knowledge about the functions of both classes of vitamins.
	40. Have the Knowledge about the health disorders of the deficiency of vitamins.
	41. Have the ability to write the chemical structures vitamins.
مخرجات التعلم للمادة الدراسية	42. Have the ability to describe the chemical composition of enzymes.
الدراسية	43. Have the ability to describe the types of enzyme inhibitors.
	44. Have the knowledge about the classification of hormones.
	45. Have the ability to describe the mechanism of hormone secretion.
	46. Have the knowledge about bioenergetics.
	Indicative content includes the following:
	Nucleic acids/ definition/ types/ Functions. [2 hrs]
Indicative Contents	Nucleotides and nucleosides / functions and structures [4 hrs]
indicative contents	DNA structures/ types of RNA / protein synthesis. [2 hrs]
المحتويات الإرشادية	• Vitamins definition, functions, classifications, and deficiency. [6 hrs]
	Enzymes definition, functions, classifications, and composition. [10 hrs]
	Hormones definition, functions, classifications, and disorders. [6 hrs]
	Bioenergetics.

Learning and Teaching Strategies			
	استراتيجيات التعلم والتعليم		
Strategies	Foundational concepts are underlying concepts that students are expected to know prior to entering biochemistry and are essential for understanding big ideas in the discipline. These strategies include bond energy, free energy, pH/pKa, hydrogen bonding, alpha helix, and protein function with subsequent development of a diagnostic instrument to assess student understanding of these concepts at the onset and close of a biochemistry course. Foundational concepts are integral to student success in biochemistry as they provide a scaffold onto which students build threshold concepts, a transformed way of understanding the discipline without which the learner cannot progress. A number of threshold concepts in biochemistry can be added including the physical basis of interactions, macromolecular structure and function, and steady state. Utilization of pre-existing mental structures to build new knowledge is the basis for the constructivist model of learning. Learners create new meaning using what they already know thus information retrieval is integral to		

making these connections.	

Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ ١٥ اسبو عا				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	92	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	6	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation تقييم المادة الدر اسية						
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative assessment	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
	Projects / Lab.	1	10% (10)	Continuous	All	
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	2hr	50% (50)	16	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus)
المنهاج الاسبوعي النظري
Material Covered

	·
Week 1	Nucleic acids/ definition/ types/ general chemical composition.
Week 2	Nitrogen bases/ types and structures/ Nucleosides and nucleotide.
Week 3	DNA structures/ types of RNA/ Protein synthesis
Week 4	Vitamins/ classification/ general review.
Week 5	Water soluble vitamins. / structures/ RDA/ deficiency.
Week 6	Fat soluble vitamins. / structures/ RDA/ deficiency.
Week 7	Enzymes/ definition/ chemical composition/ the mechanism of enzyme activity.
Week 8	Classes of enzymes/ examples/ factors affecting on enzyme activity.
Week 9	Michaelis Menten and lineweaver burk equations.
Week 10	Inhibitors / types / examples / denaturation of enzymes.
Week 11	Problems
Week 12	Hormones/ definition/ chemical structures/ the mechanism of hormones secretions.
Week 13	Classification of hormones.
Week 14	Disorders related to hormones deficiency.
Week 15	Bioenergetics
Week 16	Final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	المنهاج الأسبوعي للمختبر			
	Material Covered			
Week 1	Lab 1: Introduction to Lipids and fatty acids			
Week 2	k 2 Lab 2: Separate the main types of fat			
Week 3	3 Lab 3: Acrolein test (distinguish of glycerol)			

Week 4	Lab 4: copper acetate test differentiate between TG, saturated and unsaturated fatty acids
Week 5	Lab 5: Iodine test (distinguish unsaturated fatty acids)
Week 6	Lab 6: Quiz + preparation of soap test
Week 7	Lab 7: reaction of soap (a) preparation of fatty acids from soap by using HCl
Week 8	Lab 8: reaction of soap (b) Salting out
Week 9	Lab 9: reaction of soap (c) Insoluble soap
Week 10	Lab 10: Quiz + Color test of proteins and amino acids (1) Ninhydrin test
Week 11	Lab 11: (2) Xanthoproteic test
Week 12	Lab 12: (3) Biuret test (general test for compounds having a peptide bond)
Week 13	Lab 13: Final Exam

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
	Text	Available in the Library?			
Required Texts	PRINCIPLES OF BIOCHEMISTRY by David L. Nelson and Michael M. Cox	Yes			
Recommended Texts	Biochemistry by Reginald H. Garrett Charles M. Grisham University of Virginia	No			
Websites	https://www.googleadservices.com/pagead/aclk?sa=L&ai=DChcSEwiLw42j-M7_AhVCh2gJHcDjCDEYABAAGgJ3Zg&ohost=www.google.com&cid=CAESa-D2D4iWOcYb_8JOfJvpL-F7YIgrdGl13zh4J9l8Wsl1mutdns9hYUdktXadbisFS2R3at1g-OOMoqOqNkt2fuhLTPPHJEwudZdpGuDCGXV47aX34hnx-IpxblAKCbQ87jsOlUrBr7Jnu1&sig=AOD64_1stsmSDejwtPdTpVJQyfdJPH_8-g&q&adurl&ved=2ahUKEwjg-Yaj-M7_AhVrZ_EDHbrMDHUQ0Qx6BAgIEAE				

Grading Scheme	
مخطط الدرجات	

Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
. ,	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information معلومات المادة الدر اسية						
Module Title		kinetic chemistry		Chem	ical Kinetics	
Module Type		Core			⊠ Theory	
Module Code	CHE 35127				□ Lecture ⊠ Lab	
ECTS Credits		6			☐ Tutorial ☐ Practical	
SWL (hr/sem)		150			□ Seminar	
Module Level		3	Semester of Delivery 5		5	
Administering Dep	partment	Type Dept. Code	College	ge Type College Code		
Module Leader	Samah Hus	sein Kadhim	e-mail	samah.h_chem_chem@sci utq.edu.iq		@sci utq.edu.iq
Module Leader's A	Acad. Title	Professor	Module Leader's Qualification		alification	Ph.D.
Module Tutor	r		e-mail	E-mail		
Peer Reviewer Name			e-mail E-mail			
Scientific Committee Approval Date		01/06/2023	Version Number 1.0			

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module CHE 24122 Semester 4			4	
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims أهداف المادة الدراسية	 1-To derive and use integrated rate expressions for first and second order reactions. 2- To understand how rates and reaction order can be determined from experimental data. 3- To describe the temperature dependence of rate in terms of the Arrhenius equation and simple collision theory (SCT) and activated complex theory (ACT). 4-To discuss elementary, complex non-chain and chain reactions. 5- To introduce the use of the steady state treatment in the disentangling of rate data. 6-To consider the kinetics of chain reactions, e.g. ozone depletion, radical polymerisation. 7- To consider the kinetics catalysis, using of enzyme-catalyzed reactions as an example. 				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Chemical Kinetics: rate equations and reaction rate constant; activation energy, its determination and interpretation. List the various terms associated with chemical kinetics. Summarize what is meant by a rate law, order and molecularity. Discuss the Arrhenius law; reaction kinetics of complex heterogeneous reactions; consecutive and competing reactions and rate determining steps; catalysis. Describe Polymerization kinetics- Enzymes- The Michaelis-Menten mechanism of enzyme catalysis Define the steady – state approximation. Apply mass and energy balances to chemical reactions. Use chemical thermodynamics to define problems. Acquire kinetic data from literature and laboratory. Interpret such data. Discuss the kinetic model of gases-the kinetic theory of gases viscosity Discuss the Maxwell-Boltzmann distribution of molecules. Discuss thermal conductivity. 				
Indicative Contents	Indicative content includes the following.				

المحتويات الإرشادية	
	Part A – Chemical kinetics
	Introduction - Chemical kinetics- The rate of chemical reaction -factors influencing reaction rate- The rate law and rate constant- Order of reaction-Properties of reaction orders- Molecularity of a reaction-Derivation of differential and integral velocity equations-determination the reaction order- half-life time-first order reactions [hrs]
	Zero order reactions- Pseudo first order reactions- Determination of the reaction order-Temperature and Reaction Rate- Arrhenius equation-determination the activation energy- Collision theory. Transition state theory. [hrs]
	Catalysts and Reaction Rates -Reaction mechanisms – the rate determination step and reaction mechanism- The steady – state approximation-Kinetics of complex reactions - Types of complex reactions - The parallel reactions- consecutive or sequential reactions. [hrs]
	Reversible reactions- Chain reactions- explosions-Polymerization kinetics- Enzymes- The Michaelis-Menten mechanism of enzyme catalysis. [hrs]
	Revision problem classes [hrs]
	Part B - Molecular motion in gases
	Fundamentals
	Introduction – molecular motion in gases-the kinetic model of gases-the kinetic theory of gases viscosity. [hrs]
	The molecular velocity distribution of gases- The Maxwell-Boltzmann distribution of molecules-The mean free path, collision diameter-Thermal conductivity-Degrees of freedom of gaseous molecules. [hrs]
	The principle of equal power distribution- some numerical values of molecular kinetic energy for ideal gases only. [hrs]

Learning and Teaching Strategies استراتيجيات التعلم والتعليم				
Strategies	The module is delivered through a series of lectures, supported by appropriate case study material as necessary. Lectures are supported with tutorial sessions, which promote teamwork, development of oral presentation and ICT skills, e-learning, peer feedback and self-learning. Learning outcomes are assessed by formal examination and coursework.			

	Delivery Plan (Weekly Syllabus)			
	المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Introduction – Chemical kinetics- The rate of chemical reaction -factors influencing reaction rate			
Week 2	The rate law and rate constant- Order of reaction-Properties of reaction orders- Molecularity of a reaction			
Week 3	Derivation of differential and integral velocity equations-determination the reaction order- half-life time-first order reactions			
Week 4	Second order reactions- Third order reactions			
Week 5	Zero order reactions- Pseudo first order reactions- Determination of the reaction order			
Week 6	Temperature and Reaction Rate- Arrhenius equation-determination the activation energy-			
Week 7	Collision theory. Transition state theory			

Week 8	Catalysts and Reaction Rates -Reaction mechanisms – the rate determination step and reaction
	mechanism- The steady – state approximation
Week 9	Kinetics of complex reactions - Types of complex reactions - The parallel reactions- consecutive or
	sequential reactions
Week 10	Reversible reactions- Chain reactions- explosions
Week 11	Polymerization kinetics- Enzymes- The Michaelis-Menten mechanism of enzyme catalysis
Week 12	Introduction – molecular motion in gases-the kinetic model of gases-the kinetic theory of gases viscosity
Week 13	The molecular velocity distribution of gases- The Maxwell-Boltzmann distribution of molecules-The mean free path, collision diameter
Week 14	Thermal conductivity-Degrees of freedom of gaseous molecules
Week 15	The principle of equal power distribution- some numerical values of molecular kinetic energy for
	ideal gases only
Week 16	Final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	المنهاج الأسبوعي للمختبر			
	Material Covered			
Week 1	Lab 1: Hydrolysis of an ester catalyzed by acid.			
Week 2	Lab 2: Determination the rate constant of base catalyzed hydrolysis of an ester by titration.			
Week 3	Lab 3: Determination the rate constant of base catalyzed hydrolysis of an ester by electrical conductivity measurements.			
Week 4	Lab 4: Determination of rate constant of reaction between iodide and persulfate ions by titration.			
Week 5	Lab 5: A Study of Reaction Kinetics the Iodination of Acetone.			
Week 6	Lab 6: The mechanism study of hydrogen peroxide and hydrogen iodide.			
Week 7	Lab 7: Hydrolysis of an Ester in the Presence of Base Using Different Concentration			

Week 8	Lab 8: Determination the rate constant of a second order reaction using equal initial concentration
Week 9	Lab 9: The effect of change of temperature on the rate of reaction between H_2O_2 and Hl.
Week 10	Lab 10: Study the effect of change of solvent on the reaction between iodide and persulfate ions.
Week 11	Lab 11: Study the effect of change of temperature on the reaction between iodide and persulfate ions.
Week 12	Lab 12: Determination of rate constant for the hydrolysis of benzilidine spectrophotometry.
Week 13	Lab 13: Study the autocatalytic reaction between potassium permanganate and oxalic acid.
Week 14	Lab 14: A kinetic study of potassium iodide with potassium persulfate using iodide clock reaction.
Week 15	Lab 15: The effect of concentration and temperature on the rate of reaction between sodium thiosulphate and hydrochloric acid.
Week 16	Final exam

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	Essentials of physical chemistry A Run Bahl B.S. Bahl G.D. Tull S. Chan company LTD. 2000	No		
Recommended Texts	P.W. Atkins Physical chemistry 8th edition	No		
Websites				

Grading Scheme					
مخطط الدرجات					
Group	و Grade التقدير Marks (%) Definition				
Success Group	Success Group A - Excellent امتياز 90 - 100 Outstanding Performance				

(50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors
	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information معلومات المادة الدر اسية							
Module Title	Electroch	emistry & Photoch	nemistry	Electr	Electrical and photochemistry		
Module Type		Core			⊠ Theory		
Module Code		CHE 36134			□ Lecture ⊠ Lab		
ECTS Credits		6	6 ⊠ Tutorial				
SWL (hr/sem)		150					
Module Level		3	Semester of Delivery 6		6		
Administering Dep	partment	Type Dept. Code	College	Type College Code			
Module Leader	Samah Hussei	n Kadhim	e-mail samah.h_chem_chem@sci utq.edu.io		@sci utq.edu.iq		
Module Leader's A	Acad. Title	Professor	Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor	e-mail E-mail						
Peer Reviewer Name			e-mail	e-mail E-mail			
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0		

Relation with other Modules

العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	Prerequisite module CHE 35127 Semester 5				
Co-requisites module None Semester					

Modu	le Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية
Module Aims أهداف المادة الدراسية	 The aim of this module is to provide students with fundamental concepts of Electrical and photochemistry and their applications and importance in industry, energy and nature. To understanding of Theories of electrolytic conductance To understand voltage, current, Ohm's, and Faraday's laws of electrolysis. This course deals with the basic concept of electrochemical cell. To understand the light inducedexcitation and photochemical reaction To understand Beer Lambert law and Einstein's law of photoequivalence. To understand molecular electronic structure and electronic spectrum.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Recognize how electrolysis and electrochemical cells works List the various terms associated with Electrical and photochemistry. Summarize what is meant by a basic Galvanic Cells. Discuss the Variation of conductance with concentration. Describe Types of electrodes. Define Ohm's law. Identify the laws of photochemistry-Beer Lambert law Discuss the electronic spectrum-photosensitization Discuss the photochemical processes and quantum yield

	Indicative content includes the following.				
	<u>Part A - Electrical</u> Introduction-Electrochemistry-Important laws and Units-Electrolysis and Faraday's laws of electrolysis- Electrolytic conductivity- equivalent conductance-molar conductance- Variation of conductance with concentration. [hrs]				
	Determination of Λ° - Conductance Measurements Applications-Theory of electrolytic conductance -Electrical migration and transport numbers-Conductometric titrations-Mobilities of hydrogen and hydroxyl ions. [hrs]				
	Electrochemical Cell- Galvanic Cells, Daniel cell- Electromotive force- galvanic series Types of electrodes. [hrs]				
Indicative Contents المحتويات الإرشادية	Reversible Galvanic Cell Operation- Changes in Free Energy for Cell Reaction- Nernst Equation -Concentration cells- Types of concentration cells- Potentiometric titrations				
المعتويات الإرشادية	Batteries- types of batteries. [hrs] Revision problem classes [hrs]				
	<u>Part B - Photochemistry</u>				
	Fundamentals Photochemistry- regions of the electromagnetic spectrum-the laws of photochemistry-Beer Lambert law-Einstein's law of photoequivalence-quantum yield- photochemical processes. [hrs]				
	Selective chemical reactions-molecular orbitals and types of electronic transfers- Molecular electronic structure-multiplicity, singlet and triplet states-selection rules- Types of transfers forbidden and allowed- potential energy curves for diatomic molecules. [hrs]				

electronic spectrum-photosensitization-half-life of excited state –quantum yield for fluorescence and phosphorescence. [hrs]

Learning and Teaching Strategies استراتيجيات التعلم والتعليم			
Strategies	The module is delivered through a series of lectures, supported by appropriate case study material as necessary. Lectures are supported with tutorial sessions, which promote teamwork, development of oral presentation and ICT skills, e-learning, peer feedback and self-learning. Learning outcomes are assessed by formal examination and coursework.		

	Delivery Plan (Weekly Syllabus)
	المنهاج الاسبوعي النظري
	Material Covered
Week 1	Introduction-Electrochemistry-Important laws and units-Electrolysis and Faraday's laws of electrolysis
Week 2	Electrolytic conductivity- equivalent conductance-molar conductance- Variation of conductance with concentration
Week 3	Determination of Λ° - Conductance Measurements Applications
Week 4	Theory of electrolytic conductance -Electrical migration and transport numbers

Week 5	Conductometric titrations- Mobilities of hydrogen and hydroxyl ions
Week 6	Electrochemical Cell- Galvanic Cells, Daniel cell- Electromotive force- galvanic series
Week 7	Types of electrodes
Week 8	Reversible Galvanic Cell Operation- Changes in Free Energy for Cell Reaction- Nernst Equation
Week 9	Concentration cells- Types of concentration cells- Potentiometric titrations
Week 10	Batteries- types of batteries
Week 11	Photochemistry- regions of the electromagnetic spectrum-the laws of photochemistry-Beer Lambert law
Week 12	Einstein's law of photoequivalence-quantum yield- photochemical processes
Week 13	Selective chemical reactions-molecular orbitals and types of electronic transfers- Molecular electronic structure
Week 14	multiplicity, singlet and triplet states-selection rules- Types of transfers forbidden and allowed- potential energy curves for diatomic molecules
Week 15	electronic spectrum-photosensitization-half-life of excited state –quantum yield for fluorescence and phosphorescence
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الأسبوعي للمختبر				
	Material Covered				
Week 1	Lab 1: Introduction - Determination of cell constant.				
Week 2	Lab 2: Conductomtric titration of strong acid with strong base.				
Week 3	Lab 3: Conductomtric titration of an acid mixture (HCl+HAC) with strong base.				
Week 4	Lab 4: Variation of conductance with concentration strong and weak electrolytes.				
Week 5	Lab 5: Determination of equivalent conductance at infinite dilution (Λ°) and dissociation constant of weak acid (acetic and benozoic acid).				

Week 6	Lab 6: Quantitratin analysis of aspirin bills by electrical conductivity measurements.
Week 7	Lab 7: Determination of solubility of sparingly soluble salts from conductivity measurements.
Week 8	Lab 8: Determination of hydrolysis constant of aniline hydrochloride by conductivity.
Week 9	Lab 9: Titration of KCl vs AgNO ₃ (Precipitation Titration)
Week 9	Lab 9. Intration of Kervs Agno3 (Freeipitation Intration)
Week 10	Lab 10: Determination the hydrolysis constant by conductimetric measurements.
Week 11	Lab 11: Determination the dissociation constant of a weak acid (approximate E.M.F.) PH method.
Week 12	Lab 12. The standard electrode notentials ring and conner
Week 12	Lab 12: The standard electrode potentials zinc and copper.

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
Text Avai					
Required Texts	Physical chemistry Gordon . m. barrow	NO			
Recommended Texts	P.W. Atkins Physical chemistry 8th edition	No			
Websites					

Grading Scheme مخطط الدر جات					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	

Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Module Information معلومات المادة الدر اسية						
Module Title	Inc	organic chemistr	y	Modu	le Delivery	
Module Type		Core			🖾 Theory	
Module Code	CHE 36132				☐ Lecture ⊠ Lab ⊠ Tutorial ☐ Practical ☐ Seminar	
ECTS Credits		6				
SWL (hr/sem)		150				
Module Level 3		3	Semester o	of Delivery 6		6
Administering Dep	partment	Type Dept. Code	College	Type College Code		
Module Leader	Nuha Hussain & Haider Abba		e-mail Nuh.hussain@sci.utq.edu.iq		lu.iq	
Module Leader's A	Acad. Title	Professor	Module Lea	Module Leader's Qualification Ph.D.		Ph.D.
Module Tutor	or		e-mail	E-mail		
Peer Reviewer Name			e-mail	E-mail		
Scientific Committee Approval Date 01		01/06/2023	Version Nu	mber	1.0	

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module CHE 35125 Semester 5					
Co-requisites module None Semester					

Module Aims, Learning Outcomes and Indicative Contents		
	أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإر شادية	
Module Aims أهداف المادة الدر اسية	 48. Coordination compounds are a major feature of the chemistry of over half the elements. 49. Coordination compounds have important roles as industrial catalysts in controlling reactivity, and they are essential in biochemical processes 50. Coordination Compounds Are Involved in the Treatment of Patients Poisoned with Heavy Metal Ions 51. Coordination Complexes Are Used in X-Ray Crystallography and Nuclear Magnetic Resonance 	
Module Learning	47. Determine Molecule Structure	
Outcomes	48. Correlate Lewis Structure, Octet Rules, VSEPR Rules	
مخرجات التعلم للمادة الدراسية	 49. recognize Molecular Orbital Theory and The Combination Of Atomic Orbitals 50. Explain to bonding in complexes using Molecular Orbital Theory and The Combination Of Atomic Orbitals 51. Explain the spectroscopic properties of coordination compounds. 52. Refer to the reaction mechanisms of coordination compounds. 	
Indicative Contents		
المحتويات الإرشادية		

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

|--|

Delivery Plan (Weekly Syllabus)		
المنهاج الأسبوعي النظري		
	Material Covered	
Week 1	The introduction of bonding theory: Ionic and Covalent Bonding	
Week 2	Electrostatic and Crystal Field Theory	
Week 3	Crystal Field Theory to octahedral system	
Week 4	Crystal Field Theory to tetrahedral system	
Week 5	John Teller Event	
Week 6	Ionic Bond and Metallic Bond; Crystal Structure, Lattice Energy	
Week 7	Molecular Orbital Theory and The Combination Of Atomic Orbitals, Heteronuclear polyatomic molecules	
Week 8	Molecular Orbital Theory and The Combination Of Atomic Orbitals, Homonuclear diatomic molecules	
Week 9	Molecular Orbital Theory to complexes	
Week 10	Magnetic Properties of Coordination Compounds	
Week 11	Color in Coordination Compounds	
Week 12	Thermodynamics and Kinetics of Complex Formation	

Week 13	Reactions in Octahedral Complexes
Week 14	Reactions in Square Planar Complexes
Week 15	electronic transition
Week 16	Final Exam

	Delivery Plan (Weekly Lab. Syllabus)		
المنهاج الأسبوعي للمختبر			
	Material Covered		
Week 1	Lab 1: cobalt ion reactions		
Week 2	Lab 2: Preparation of the complex ethylenediaminetetrachloride barium cobaltate (III) tetrahydrate		
Week 3	Lab 3: Preparation of the complex tricarbonate sodium cobaltate (III) trihydrate		
Week 4	Lab 4: Preparation of the complex hexaamine cobalt (III)		
Week 5	Lab 5: Preparation of the complex triamine trinitro cobalt (III)		
Week 6	Lab 6: Preparation of the complex potassium cobalt(III) tri-oxalate		
Week 7	Lab 7: Preparation and spectroscopic study of some complexes of copper(II).		
Week 8	Lab 8: Preparation of the complex bis-clasinito copper(II) dihydrate		
Week 9	Lab 9: Preparation of the complex bis sulfate (ethylene diamine) copper(II) dihydrate		
Week 10	Lab 10: Preparation of the complex dioxalato-copper (II) potassium dihydrate		
Week 11	Lab 11: Spectroscopic study of the prepared copper complexes		
Week 12	Lab 12: Nickel ion interactions		
Week 13	Lab 13: Preparation of the complex hexaamine nickel(II) chloride		
Week 14	Lab 14: Preparation of complex bis (dimethylglyoxime) nickel (II)		
Week 15	Lab 15: Examination		

Week 16	Final Exam

Learning and Teaching Resources مصادر التعلم والتدريس			
	Text	Available in the Library?	
Required Texts	Text Book of Coordination Chemistry, R. K. Sharma, Discovery Publishing House, 2007	No Online only	
Recommended Texts	Coordination Chemistry, George B. Kauffman, 1994	No Online only	
Websites			

Grading Scheme							
مخطط الدرجات							
Group	Grade	التقدير	Marks (%)	Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
(50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors			
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	ر اسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required			

MODULE DESCRIPTION FORM